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In this paper, a large-scale computational analysis has been undertaken of tubular radiators 
with fin arrays in which the temperature of the fluid varies along the radiator length. The 
presence of an optimum fin outer diameter for a given pipe diameter, which is independent 
of other thermophysical parameters, has been brought out. A set of useful correlations, 
which will enable the designer to quickly evaluate the performance of the system, is 
developed for different fin profiles. A design methodology assuming an infinite fluid side 
heat transfer coefficient has been presented. Comparisons have been made for validating 
the present calculations. 
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I n t r o d u c t i o n  

The use of extended surfaces for augmenting heat transfer 
in space applications is well known. In the absence of 
convection, radiation coupled with conduction is the 
only mode of heat transfer. At present, the design trend 
in such systems is to arrive at a weight-optimized design 
on a viable fin geometry. Sparrow et al. (1961) and 
Karlekar and Chao (1963) considered mutual irradiation 
between the fins but neglected base interaction for a 
radiator with longitudinal fins on a cylindrical base. 
Sparrow et al. (1962) analytically studied the heat transfer 
characteristics of an annular fin and tube radiator. They 
fully accounted for the complex interaction problem resulting 
from the mutual irradiation between neighboring fins and 
between fins and tube surfaces by applying the then newly 
devised contour integral method (Sparrow 1962) for deriving 
the radiant interchange factors. The results definitely indicate 
that the use of fins lead to a significant increase in heat transfer 
compared with the unfinned tubular radiator. Schnurr (1976) 
devised an optimization technique for radiating fin arrays with 
respect to weight. Here, a nonlinear optimization approach is 
used to determine the minimum weight configuration for the 
radiating fin arrays used in space applications. Straight and 
circular fins of rectangular and triangular profiles were 
considered. Except for the optimization technique, t h e  
analysis of the problem resembles the earlier work of 
Sparrow et al. (1962). 

Keller and Holdredge (1970) obtained a one-dimensional 
(l-D) numerical solution for the steady-state thermal behavior 
of annular fins of trapezoidal profile that transfers heat by 
conduction and radiation. Schnurr and Cothran (1974) 
developed a numerical method to calculate the temperature 
distribution and radiant heat transfer for an annular fin tube 
radiator with fins of trapezoidal profile. All surfaces were 
assumed to be gray and to emit and reflect diffusely. Radiative 
interactions between adjacent fins and between fins and tube 
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were included. Results of a parametric study for the special 
case of circular fins of triangular profile, with constant 
thermal conductivity were presented and were used to 
optimize the fin array with respect to weight. 

Sunil Kumar et al. (1992, 1993) have considered rectangular 
and trapezoidal profiled fins standing on a surface that forms 
the side of a duct through which hot fluid is flowing. The 
analysis was made for a radiator with varying base 
temperature, thus accounting for the variation of temperature 
of the coolant flowing in the duct. An optimization technique 
was devised to find the maximum heat loss for a given volume 
addition, along with a method to find out the minimum weight 
required for a given heat loss. A parametric study was carried 
out, and correlations were evolved to find the optimum fin 
number and maximum heat loss ratio. 

The present analysis is directed towards an annular 
finned radiator where the working fluid inside the tube 
changes its temperature as it flows inside the tube, losing 
heat into space due to radiation from the tube surface 
(and from the annular fins, if they are present). This 
geometry and assumption represent a true radiator and 
are a departure from all the above-mentioned references, 
which have assumed a constant fin base temperature. The 
geometry involves the interaction of radiation between 
a nonisothermal fin with neighboring nonisothermal fins, 
nonisothermal base, and a constant temperature environment. 
Since the problem is highly nonlinear and conjugate in nature, 
the computer time needed for the solution is very large. 
Consequently, the parametric study is restricted to four 
parameters only, namely the mCp product, inlet temperature, 
added fin volume, and the pipe diameter. This restriction is 
accomplished by keeping the emissivity of all radiating surfaces 
constant at 0.98 (for lacquer paints) and by keeping the root 
thickness of the fin constant at 0.15 cm, which is assumed to 
be sufficient to withstand forces during take off and 
maneuvering of the spacecraft of which the radiator is a part. 
The whole fin system and the tube are made of aluminum with 
a thermal conductivity of 207 W/InK. 

In the following analysis, a term called the heat-loss ratio, 
defined as the ratio of heat loss from the finned radiator to that 
from an unfinned radiator (Sunil Kumar et al. 1992, 1993) is 
evaluated, and its dependence on the other thermophysical 
parameters is brought out. The existence of an optimum outer 
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Figure 1 
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Nomenclature for a tubular radiator with annular fins of trapezoidal profile 

diameter of the fin irrespective of the other thermophysical 
parameters such as e, Tin, and mCp for a given pipe diameter 
is brought out from a detailed analysis. Finally, correlations 
are arrived at for three fin geometries (triangular, trapezoidal, 
and rectangular) for a quick evaluation of the performance of 
the radiator. A straightforward optimization technique within 
the range of parameters discussed earlier is also presented. 

Statement of the problem 

The radiator under consideration is a tube carrying a hot fluid, 
with annular fins of trapezoidal profile around it, as shown in 
Figure 1 (extreme cases are triangular and rectangular profiles), 
and losing heat to outer space by radiation alone. The base 

lengths to the left of the first fin and to the right of the last fin 
are selected such that they are equal to half the spacing between 
any two intermediate fins. All surfaces are diffuse and have a 
uniform emissivity of e. The basic difference between a 
condenser/evaporator and a radiator is that while the 
temperature of the coolant stays constant in the case of the 
former, it varies in the case of the latter. Consequently, the 
assumption of identical temperature profiles for all the fins 
cannot be made, as in the earlier works. Analysis of each fin 
has to be done separately. Each fin will have one energy 
equation and two incidence equations, one for the right side 
and the other for the left side of the fin surface. The energy 
equation on the fluid side is also to be incorporated in the 
analysis. All this will result in a set of nonlinear integro- 
differential equations. 

Notation 
Cp Specific heat of the fluid, J/kg.K 
dF Diffuse view factor 
g Irradiation, W/m 2 
k Thermal conductivity of the fin material, W/m.K 
l 1 Length term as defined by Figure 3a 
L Length of the radiator, m 
m Mass flow of fluid, kg/s 
n Number of fins 
Ncc Convection conduction interaction parameter, 

nondimensionai = (m.Cp)/k.L 
Ng Geometrical factor = 1 + (t.d(2.Ri.tan co)) 
Ni Radiation conduction interaction parameter for 

fin i = (t.a. TabrRJk) 
Nac Black-body fin radiation conduction interaction 

parameter, nondimensional = (a.Tain Ri)/k 
NRF Radiation convection interaction parameter, non- 

dimensional, (e.a. Tain.2.n.Rl)/(mCp) 
P Nondimensional fin radius = R.dR o 
q Heat loss from the unfinned radiator, W 
Ri, Ro Fin inner and outer radius, m 
ropv Scaled optimum fin number parameter, nondimen- 

sional, (1 + n.(Ro - Ri)/L) 
rl Radius of the element on the fin, m 
S Fin spacing, m 
th, tc Base and tip fin thickness, m 
T Fin temperature, K 

T b Base temperature, K 
T~, Fluid temperature at inlet, K 
V Volume of fin added, m 3 
x Coordinate variable along the base, m 
y Coordinate variable along the fin, m 

Greek symbols 

fi Nondimensional heat loss from the unfinned radiator, 
q/( 2.1t.R i.e.a. T~n.L ) 

e Emissivity of all exposed radiating surfaces 
~k, p Angle terms as defined in Figures 2 and 3b 
tr Stefan-Boltzmann constant, 5.67 x 10-aW/m2.K4 
0 Nondimensional temperature, T/Tbi 
p Nondimensional coordinate along the radius of the 

fin = rl /R i 
~p Heat-loss ratio, nondimensional 
w Angle defined as in Figure 1 

Subscripts 

b Base 
e Opening to the space 
i Fin number 
j Base between (i - 1)th fin and ith fin 
L Left surface of the fin 
R Right surface of the fin 
oo Environmental condition 
1, 2 Neighboring fins 1 and 2 
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Formulation 

Although the formulation of the problem here shares a few 
common features with that of the one in Sunil Kumar et al. 
(1993), the geometry of the problem makes the analysis more 
tedious. The crossed-string method could be used for the 
evaluation of view factors in the previous analysis of the 
two-dimensional (2-D) duct type geometry. However, due to 
the finiteness of the elements involved, the irregular shapes, and 
the shading effect of the tube on the fin surfaces, in the present 
geometry all relevant shape factors are to be evaluated 
numerically by the contour integral method. 

Basic assumptions 

Heat loss from the surface is strictly by radiation alone. 
Formulation of the problem is carried out at steady state with 
an outer space temperature of 0 K and material surfaces having 
an emissivity of e. The local temperatures of the fins are 
assumed to be constant across the thickness. Hence the fin heat 
transfer is treated as l-D, and the temperature variation is only 
in the radial direction. At the tip, the heat conducted is equated 
to the heat loss by radiation. Resistance of the walls and the 
film on the liquid side of the heat exchanger are negligible, since 
the normally used fluids like the liquid metals have high heat 
transfer coefficients. Fluid flow is fully developed, and local 
fluid bulk temperature is assumed to be equal to the local base 
temperature. 

Energy balance 

For the present analysis, a volume element ridS.dr 1.t bounded 
by a surface area dAz is selected, which when rotated generates 
a ring element, as shown in Figure 2. The differential equation 
resulting from an energy balance for such an element in the ith 
radiating conducting fin, in the nondimensional form, is given 
by 

d20i ~ 2p - N= ] dO i N i 
dp2 + ~ - - -  - -  + - -  LP - NrP]  dp (p - Ns)2.tano~ 

x {20:- ? , , .  ÷ . ,  L ~ "JJ = 0 
(1) 

Y 

1 
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Figure 2 Geometry for radiant interchange between area elements 
on two adjacent fins in the tubular radiator 

with boundary conditions 

p = 1, 0i = 1, and (2) 

p = Ro/Ri, dddp = - Ni.Oi 4 

In order to determine the temperature along the base, the 
above equations are combined with the energy balance on the 
fluid side, viz., 

mCp(Ti. - Tbi)= q, (3) 

where q, is taken as the heat lost up to the ith fin along with 
the heat lost by the left surface of the fin. Before going into the 
two incidence equations, one for the right and the other for the 
left side of the fin, it is necessary to carry out a shape factor 
analysis for the different elements involved in exchange of 
radiation. 

Consider an elemental area dA~ on the fin (shown in Figure 
2) that exchanges radiation with the left and right fins, with 
space, and with the base. Because of the shielding action of the 
tube surface, radiant energy from only a portion of the opposite 
(left or right) fin is able to strike the element dA~. This area 
can be found by drawing tangents from dA~ to the tube surface 
(shown in Figure 2). Since the temperature along the radius of 
this area is varying, we divide this into small isothermal 
elemental areas of truncated rings dA*, as shown in Figure 2. 

The second surface that exchanges radiation with dA~ is the 
tube surface. The portion of the tube surface that is in radiant 
interaction is again found by drawing tangents from dAt to the 
tube surface, as shown in Figure 3a. The participating base 
surface area is denoted by A*. This area is also divided into a 
number of isothermal elements of area dA* for shape factor 
calculation. 

Angle factor evaluation 

The method uses a contour integration representation of shape 
factor wherein the area integrals are converted into line 
integrals. The evaluation can first be made for the shape factor 
from the area element dA 1 to the truncated ring element dA~ 
on the adjacent fin. The origin of the coordinates is fixed at 
the point shown in Figure 2. The location xl,  yl ,  zt represents 
the position of dA~, and x2, Y2, z2 represents a point on the 
contour of the ring element dA*. 

From Sparrow (1962), the expression for the shape factor 
from dA 1 to dA~ is given by dFdAt_dAi= l.Cl+ m.C, + 
n.C,, where the C's represents the contour integrals over 
dA*. Directional cosines l, m, n, in this case are l = 0, 
m = cos (90 - ~o), n = cos (180 - co). Therefore, 

2.n.dFdA,-dA~ = m. ~ (x2 -- xl  )'dz2 -~-- (22 -- Zl)'dx2 

~" (Y2 - Yt).dx2 - (x2 - x l ) - d y 2  + n.  Y ~-~ (4) 

The contour is subdivided into segments ab, be, cd, and 
da for convenience of integration. Since the integrands over the 
segment a -  d and c -  b are infinitesimally small compared 
to the other two, it is enough to integrate over the circular arcs 
d - c and b - a alone. Now, for the area dAt, 

xx = 0, Yl = rl,  zl = s + (r 1 - Ri).tan co + (R o -- Ri).tan co 

Similarly, for the contour b - a, 

x 2 = r 2.sin ~p, Y2 = r2.cos tp, z 2 = (r 2 - Ri). tan co 

where tp varies from -tpm . to + ~p,~,. 
Also, dx 2 = r 2.cos ~p.d~p, dy 2 = - r 2.sin tp.dtp, dz 2 = 0. For 

the curve b - a, noting the symmetry of the curve, the integral 
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a I 

Figure 3a Geometry for radiant interchange between a fin element 
and a base area 

b I 

figure 3b Geometry for interchange of radiant energy between an 
element on the base tube and an element on the fin 

over b - a can be written as 

I = 2m.[s + (rl - r2 - Ri + R,).tanwl. s *amnl rz. cos cp.dq 

0 r2 

+ 2n. s (pm*x (r: - rlrZ cos cp). dq 

r2 0 

where 

(5) 

r2 = r: + r: - 2r,r,.cos cp + [s + (rl - rZ - Ri + Ro).tanw12 

and 

(Pmax = cos-l (RJrJ + cos-1 (Ri/r2) 

This integral can be evaluated numerically. It can be seen that 
the desired elemental view factor is obtained by differentiating 
the above expression with respect to p2. Hence, 

dRd,, - dA; = - WW.W/W.dp, (6) 

which also can be evaluated numerically. 
The angle factor dF,,,_,,;,, representing the fraction of 

energy emitted by dA, that stnkes on the convex surface dA,* 
shown in Figure 3a, can be found using the expression given by 
Sparrow et al. (1962) which is for the entire length of the base 
(that is, between two adjacent fins). Here the surfaces involved 
in the radiant interchange are at right angles to each other. To 
get the desired results for the present geometry, the expression 
given therein must be multiplied by cos CD. Elemental view 
factor dF,,, -dAi, may be obtained by shape factor algebra 
coupled with the expression given by Sparrow et al. 

The third view factor that has to be evaluated is the one 
from the circular ring element on the base to the fin. This can 
be carried out by discretizing the circular base element into a 
number of infinitesimal areas dAb+*, as shown in Figure 3b. It 
is clear from Figure 3b that this area will see A:* on an adjacent 
fin. This area can be divided into a number of truncated circular 
rings of area dA:*. Now the view factor calculations are done 
for the element dA,** to dAr*. Let xl, y,, z1 represent the 
location of dAE* and x2, y2, z2 represent a point on the contour 
of the truncated ring dA :*. With the coordinate axes, as shown, 
we have 

x,=O,y,=O,z,=l, 

and 

x2 = rl.cos I), y, = r,.cos IL, z2 = s + (rl - 2Ri + R&tan w 

Here I = n = 0, m = cos (0) = 1, and the II/ value varies from 
zero to II/,,, = cos-’ (RJr,), taking into account the symmetry 
of the ring. The final expression for the view factor is 

2.n.dFdAb_dA;s = m. 
(x2 - x 1 ).dz, - (z2 - z,).dx, 

r2 

where r2 = r: + [s + (rl - 2Ri + R,). tano - 1,. 
For the contour a - b, the integrand becomes 

I = 2.[l 1 - (s - 2R, + R,).tano]. 
s 

*max r,. cos $.d$ 

r2 
(8) 

0 

Therefore, following the previous argument used to find out 
the value of dFdA,_dA;, we have 

dF,,r _dA;* = (- GW.kWp,).dp, (9) 

which again is to be calculated numerically. 
The remaining view factors can be calculated as follows. The 

view factor from dA, to the opening, A, is 

Fd.4,-Ae = 1 - (Fu,-A; + F,u-A;) (10) 

Similarly, the view factor from dA,+ to the opening, A,, is 

FL+,e = 1 - (F~A;-A, + FIA;-A~) (11) 

The value of FdAr - A, can similarly be determined. 

Incidence equations 

The two incidence equations, one for the right and the other 
for the left side of the ith radiating conducting fin, can be 
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written as follows. The incidence equation for the right side of 
the fin is given by 

" [ Io  g~.~ = e.T~.dAt.FdA ~_~ + e.~. Tb~+,(X) ~ + (1 -- e).~. 

xf[T:.dA*.Fd.~;-A,].dA,.dFdA,-dA: 

+ 2m t.(1 - e).cr. T,(rl) 4 + T~+l(rl) 4) 
i 

;:'S: ] + (1 - e) z. gi. R(rl) 4- gi + I, L(rl) 
i 

x - dA**.dFdA, b._dA;..dA 1.dFaA~ - dA; 

Ti+ l(rl) 4 (I -- e). + [~.~. f , 0  + 

f.0 ,] 
x gi+t,L(rt "dAt'dFdA~-d4 (12) 

d Ri --/ 

For the left surface of the fin, 

" Tb,(X) 4 + (1 e).a. ffl.L = ~7.T~.dA1.Fda~-A¢ + &~7. 

4 * x Too.dA b'FdA;- A, .dA l"dFdA~ - dA; 

[ r r  + 21r. e.(1 - e).a. (T,(rl)" + T i_ l(rl) 4) 
d R i  d O  

+(1--Q' . f , : ° fZOi .L(r , )+gi_1.R(r , )  ] 

A** .d b "dFdA~,'-aA;"dA pdFdA) -,L4; 

[f:o + ~.~. T~_ 1(rl) 4 + (1 - t). 

fRo )].dAl.dFdAl_dA~ gi - I, R( r I 
d R i  J 

These two equations are derived using the incident energy 
equation on a circular elemental ring on the tube, i.e., 
irradiation on the base, viz., 

. .  if:0 Ob.tX) = ~ . r ,~ .dAb  .FdA~-Ao + ~.#.2~. {r~-dqP 
i 

+ T,(r~)}].dA~*.dF,A;*-,A 7 

If, ° ] + (1 -- e).2n. {g~ - I , R  "~ eLL)} "dAb**'dFdA;'-aA;" (14) 
i 

M e t h o d  o f  s o l u t i o n  

The numerical solution procedure used here is similar to the 
one used by Sunil Kumar et al. (1993) for the flat-duct-type 
radiator with fins. For the sake of completeness, a brief 
summary of the method is given here. Assuming uniform base 
temperature, initial solution for the fin equations are found by 
setting the irradiation values to zero. Using the fin temperature 
profiles thus obtained and the previous values of base 

temperatures, new irradiation values are found. Base 
temperatures are updated, using these irradiation values and 
the energy equation on the fluid side. With these newly 
calculated base temperatures and the previously computed 
irradiation values, new fin temperature profiles are determined 
by solving the fin equation. This procedure is continued until 
a desired convergence is achieved for the outlet temperature. 
Equations 1 and 2 are solved by the second-order Runge-Kutta 
method. A convergence criterion of 0.0001 on the nondimen- 
sional temperatures is selected. All the integrals are evaluated 
using Simpson's rule. For the overall iteration for the 
radiator, the outlet temperature is required to converge with a 
maximum absolute error of 0.001. 

R e s u l t s  and  d i s c u s s i o n s  

Calculations were initially made to check the accuracy of the 
present numerical solution procedure and the present 
formulation of the problem. It was found that the calculations 
carried out for a constant tube surface temperature radiator 
agreed with the calculation of Sparrow ¢t al. (1962). Also, in 
the nonisotbermal base case, as the value of mCp is increased, 
the base temperature tends to progressively attain a uniform 
value. This can be appreciated from Figure 4, where the heat 
loss from the system is plotted against inlet temperature. It can 
be seen that as the mCp value is increased, the system 
performance approaches that of a condenser, as studied by 
Sparrow et al. (1962). 

Since the number of parameters in such a system is large and 
the computer time required per set is enormous, calculations 
have been restricted to a single value of emissivity of 0.98 
(lacquer paints). The system is assumed to be fabricated from 
aluminum, and hence the thermal conductivity is held fixed at 
207 W/InK in all the calculations. The length of the radiator 
is varied from 0.5 m to 1 m. Inlet temperature is varied from 
350 K to 550 K in suitable steps. This range covers the values 
encountered in satellite applications. The mCp value is varied 
from 2 W/K to 15 W/K. The fin root thickness was restricted 
to 0.0015 m with three different fin profiles, viz., 1) triangular 
(tc/th= 0), 2) trapezoidal (to/th =0.5), and 3) rectangular 
(tJth = 1). 

8oo % G - ~  
/ - ~  I ~ Present study for mCp = 1 W~K) .n. 

~<1<I<1<1<~ Present study for mCp = 5 W/K ire 
~ / x x x x x  Present study for  mCp = 15 W/K / 

"uu tC~Spar row  1962 (isothermal tube) ~ 

/ / /  
CO 5001k  

= 2// (1.) ~ L = 0 . 5  m r.~/  /--J 
{ - 4  e = 0 9  =O.OO,5m.o.ooo 5,n ///I 

4 Ri,Ro = 0 . 0 0 5  m ,  0 . 0 3  m / / 4  

0 300 0 
CO 

__~ 200 

2}5' '3go' '4:~5' '58o' 's}s'  '6,~o' '7:~s' 
I n l e t  t e m p e r a t u r e  ( K )  

Figure 4 Variation of system heat loss with fluid inlet temperature 
for various mCp values 

Int. J. Heat and Fluid Flow, Vol. 15, No. 5, October 1994 403 



Optimized tubular radiator with annular fins: S. Sunil Kumar and S. P. Venkateshan 

6.5 
x x x x x  mCp = 2 W/K 
~7~7~7 mCp = 5 W/K  

d~-6 .0  0 0 ~ m C p  = 10 W/K  

~ 5.5 

o~ 
CO 

~ 5.0 

~]Z 4.5 ~ T~ = 0.98= 350  K .~. 

t.,tc = 0.001 m, 0 .0  m 
R~ = 0.01 m 
V = 5 x i 0  -s m 3 

4.0 
0.02 063 004' 045 0~6 

Fin outer rGdius (m) 

Figure 5 Plot of heat loss ratio vs, f in outer radius w i th  m o p  as a 
parameter. Optimum fin outer radius is independent of mCp 
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Figure 6 Existence of an optimum fin outer radius for base tubes 
of different radii. The locus of the maxima lie on a straight line 

Before launching on a detailed numerical study, a few 
calculations were made to elucidate the effect of the fin outer 
diameter on the heat-loss ratio for the case of triangular 
profiled fins. It was immediately found that there is invariably 
a maximum heat-loss ratio for an optimum fin-tip diameter for 
a given tube diameter, which is independent of the emissivity 
of the surface, mCp value, and the inlet temperature. The typical 
heat loss ratio variation is as shown in Figure 5, where the 
optimum heat loss takes place for a fin outer radius of 0.04 m, 
independent of the mCp value. Further it was found that this 
optimum is not influenced by the added volume due to fins. 
This result indicates that the optimum is influenced strongly 
by the geometric factors and to a smaller extent by the 
thermophysical parameters. The only parameter that decides 
the outer diameter is the tube radius. Calculations performed 
for a different tube radii showed that the optimum outer radius 
tends to increase with tube radius, as shown in Figure 6. 
Curiously, in all these cases it was found that the optimum heat 
loss occurs when the fin height is around 0.025 m. Further, 
similar calculations performed for the other two fin profiles 
showed that the optimum fin height is around 0.025 m in all 
cases. This finding may be attributed to the area view factor 
relationship. Annular fins have an area available for conduction 
that increases linearly from the base to the tip. On the other 
hand, the surface area increases quadratically with the distance 
from the base. As the fin height is changed, keeping other things 
constant, two opposing factors come into the picture: 1) the 
conduction area increases linearly and tends to set up a 
temperature profile all along the fin; and 2) since the interaction 
with neighboring fins tends to oppose the radiation leaving, the 
temperature variation tends to decrease, which reduces the heat 
loss. Conduction may dominate for heights less than 2.5 cm, 
but the radiation interaction effect dominates beyond this 
point. At about 2.5 cm height, there is a balance between the 
two, and hence the optimum. In view of these findings, all 
further calculations were restricted to a fin height of 0.025 m. 

Temperature profi les 

Figure 7 shows the base temperature variations along the 
radiator for the set of parameter values Shown. At each fin 
location, there is a large drop in temperature, indicating a 
comparatively large amount of heat loss from each fin as 
compared to the parent tube surface in between fins. This 
temperature drop decreases progressively as we move along the 
radiator, due to a decrease in the temperature along the 
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Figure 7 Temperature variat ion along the radiator for a typical set 
of parameters 

radiator. In all the calculations, the base temperature of each 
fin is taken as the average fluid temperature based on such a 
temperature drop (each time taking the newly calculated higher 
temperature and previously calculated lower temperature and 
averaging them) across that particular fin. This calculation was 
found to produce more uniform (in a relative sense) base 
temperature profiles compared to those when the higher 
temperature alone was used for the evaluation of the fin 
temperature profiles, though the comparative effect of the 
choice of the base temperature on the total heat loss was 
negligible. However, in order to magnify the effects, a 
comparatively larger fin outer diameter along with a surface 
emissivity of 0.9 has been selected in Figure 7. Compared to a 
finned duct-type radiator considered by the authors (1992), the 
drops in temperature across the fins in the present case are 
much higher, showing thereby that annular fins are much more 
effective in radiating heat away. This result is primarily 
attributed to the area effect described by Sparrow et al. (1962). 
Moreover, because the fins are relatively shorter, the efficiency 
of the fins is high. 
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The effect of emissivity on the total heat lost from the system 
is brought out in Figure 8. Since a higher emissivity system will 
lose more heat than a lower emissivity system, the outlet 
temperature of the former is lower than that of the latter. The 
three lines indicated in the figure are smoothed temperature 
profiles based on the actual staircase-type profile shown in the 
previous figure. 

In Figure 9, the average base temperature variation along 
the radiator for three different fin profiles is given. From the 
figure, it can easily be concluded that the triangular-profile fin 
system is preferable to the other two systems because the 
temperature drop across it is largest for a given fin volume in 
the radiator. This finding can be attributed to the higher 
number of triangular fins that may be used in this system for 
a particular volume added, as well as the increase in area. This 
result is true in spite of the fact that the trapezoidal and 
rectangular profile fin eases will have more uniform fin 
temperature profiles. These two opposing factors (i.e., more 
uniform fin temperature profiles for rectangular fin geometry 
at the cost of a smaller number of fins for the fixed 
volume added), lead to the behavior shown in Figure 9. 

The variation of actual temperature profile along each fin is 
shown in Figure 10. It can be noticed that more or less uniform 
distribution of temperature exists in the fins, unlike that of the 
flat duct-type radiator considered by the authors in their earlier 
work (Sunil Kumar and Venkateshan 1992). Superiority of the 
tubular radiator can be attributed to the higher average fin 
temperatures due to shorter fins. Unlike the duct-type radiator 
geometry, the first and the last fins in the tubular geometry do 
not show abnormally steeper temperature profiles. This finding 
also is due to relatively short fins in the system, in which the 
deviation of fin-tip temperatures from the base temperatures 
are not very significant. For taller nonoptimum fin heights, a 
steeper trend may be expected, as in the duct-type radiator. 

The midfin temperature profiles in a tubular radiator 
employing three different fin geometries are shown in Figure 
11. It can be noticed that, for the set of thermophysical 
properties shown, the base temperature for the fin is maximum 
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for the triangular profile and minimum for the rectangular 
profile (the total number of fins in the three cases are held fixed 
at 11). This finding can be explained by looking at the fin 
temperature profiles. The rectangular fin has an almost uniform 
temperature profile compared to the other two, thus having a 
higher fin efficiency compared to the triangular and trapezoidal 
profiles. This means that more heat is lost from such a system 
at every fin location. Close to uniform temperature conditions 
prevailing in the rectangular fin may be attributed to the 
increased conduction area available and to multiple reflections 
of radiation fluxes that take place within the cavity formed by 
adjacent fins and the base. Therefore, at any position on the 
tube surface, the temperature will be lower for the system with 
rectangular fins as compared to the other two profiles. 

Heat loss ratio and system heat loss 

In Figure 12, the heat-loss ratio is plotted against the volume 
added, in the form of fins attached, for three different 
emissivities. Although a system with a higher emissivity loses 
more heat than a system with lower emissivity, the heat-loss 
ratio ~p, which describes how effective the system is, decreases 
with increasing emissivity. This finding is attributable to the 
cavity effect, which varies inversely with the emissivity. In the 
case of a system with e = 0.98, the cavity effect will not be 
significant, since the emissivity is already close to unity. 
However, when e is small, the cavity effect is stronger and 
the effective emissivity is much larger than e. Hence, the 
heat-loss ratio shows a relatively larger value for small 
emissivity values. It can be seen from the figure that the 
heat-loss ratio varies almost linearly with the volume of fin 
added. 

However, it was found that heat-loss ratio tends to level off 
as the number of fins are increased beyond a certain number. 
Only a marginal increase in the effectiveness of the system takes 
place by the addition of fins above this number. In other words, 
the marginal increase in tp after this number will mean an 
unnecessary weight penalty and hence is not desirable from the 
viewpoint of design optimization. This is explained in Figure 
13, where heat loss ratio is plotted against the volume of fin 
added. Actually, the picture will be more clear when we look 
at Figure 14, where the slope of the ~0-vs.-volume curve is 
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plotted against the added volume itself. It is immediately 
apparent that as the number of fins are increased, the slope of 
the curve showing ~o vs. number of fins decreases significantly, 
thus supporting the above comments. The reason that the 
system represented in Figure 12 does not seem to follow the 
above argument is because of the difference in the 
thermophysical parameters. Actually, this system also follows 
the same trend, but lies in the more linear region of the curved 
profile. 

The effect of the variation of inlet temperature is brought 
out in Figure 15. Here it is seen that as the inlet temperature 
goes up, the effective performance value, ¢p, goes down. From 
the above two graphs, it can be concluded that the system is 
most efficient at a lower temperature and lower emissivities 
when ~0 is the criteria for evaluation, even though the trend of 
actual heat loss will actually be the opposite because at a higher 
temperature the system will lose more heat than at a lower 
temperature. The same applies to the variation with respect to 
emissivity. This shows that adding fins to this type of system 
may not be as effective at very high temperatures as at lower 
temperatures. This finding can be attributed to the fact that 
the percentage increase in the heat lost due to addition of fins 
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is not significant compared to the total heat lost, because of 
the fourth power of temperature occurring in the denominator 
of rp. 

As the tube diameter of the radiator is increased, thereby 
keeping the height of the fins and the volume of the system 
constant, the actual heat loss from the system and the heat-loss 
ratio decrease. The decrease in heat-loss ratio is mainly due to 
the tube surface-area term (which increases with diameter) in 
the denominator of cp. The increase in actual heat loss for the 
lower-diameter tube is attributed also to the increased number 
of fins, since the total volume of the system is fixed. In Figure 
16, the actual heat lost is plotted against the volume of the 
system for different pipe radii. It can be seen that the heat lost 
from the system increases with the decrease in tube diameter, 
when the volume of the system (which includes both the volume 
of the tube and the fins attached to it) is held fixed. Figure 17 
demonstrates the effect of pipe diameter on the heat-loss ratio. 

It can be noticed that a system with a smaller pipe diameter 
should be preferred for a fixed volume of the system from the 
viewpoint of maximum effectiveness. 

The effect of variation of mCp on the heat-loss ratio for 
radiators with different fin profiles is brought out in Figure 18. 
These calculations are all for a fixed system volume of 
3 x lo-’ m3. As expected, the triangular-profile fin system 
shows a definite edge over the other two systems, for the 
reasons explained earlier. Also, an indiscriminate increase in 
the mCp product will not essentially result in improving the 
performance coefficient of the system represented by cp. 
Although there is a steep increase in cp initially with an increase 
in mCp, after a particular point it levels off, showing that the 
increase of mCp after this point will not really increase the 
heat-loss ratio. An increase in mCp will result in the generation 
of a more uniform temperature profile along the base, but the 
initial rate of this generation cannot be sustained in later stages. 
This is the reason for the trends achieved in Figure 18. 
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The comparative performance of the three radiator fin 
geometries (triangular, trapezoidal, and rectangular) are shown 
in Figure 19. It can be seen that, in all the three cases as the 
volume added increases, there is an almost linear increase in 
~p. But the slopes of these lines are different, and the line with 
the larger slope determines which system is better. The 
triangular-profile fin system shows a marked improvement over 
the other two geometries because of the increased number of 
fins for a fixed volume added, and hence this system will be 
recommended for use from the point of view of heat transfer. 
The superiority of the triangular-profile fin system is achieved 
through a balance of the fin temperature profiles and the 
number of fins. This is due to the fact that the average fin 
temperature of the triangular-profile fin is lower than the other 
two, as has been illustrated earlier in Figure 11. At least for 
the case shown in Figure 19, it seems as though the number of 
fins have a more decisive role to play in the choice of fin 
geometry than their respective temperature profiles. Hence, the 
triangular fin profile is the best followed by the trapezoidal and 
rectangular fin profiles, in that order. The strength-criterion 
calculations also show that the triangular-profile fins are the 
best. 

However, if the volume added is not a limiting factor, i.e., if 
the number of fins is fixed for all three cases, then the 
rectangular-profile fin system shows a definite superiority over 
the other two, viz., the trapezoidal and triangular, in that order 
(see Figure 20). This finding is due to the effects that have been 
presented and discussed earlier. Since the number of fins are 
held fixed, the rectangular fin profile (with a higher mean fin 
temperature) loses more heat than the trapezoidal and 
triangular fin systems. 

In Figure 21, the present system is compared with a constant 
base temperature system (Sparrow 1962) and a conventional 
radiator system consisting of a tubular radiator with two 
longitudinal fins attached (Mackay 1963) where the total heat 
lost from the system is plotted against the total volume of the 
system. At a fixed volume, the system with constant base 
temperature loses more heat than a system with varying base 
temperature. It is evident from the figure that this difference 
keeps increasing with added volume. A design based on 
constant base temperature will then be grossly in error for the 
large system required to dissipate a sizable amount of heat. 
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Figure 21 Comparison of performance of radiators with and 
without base temperature variation. Fins are of rectangular profile, 
and the number of fins are varied to change the system volume. 
Corresponding performance of a conventional radiator is also 
presented 

From Figure 4, it is also clear that this difference or error 
increases with an increase in the operating temperature of the 
radiator, as represented by the inlet temperature of the fluid. 
This is due to the dependence of radiation on the fourth power 
of temperature, as pointed out earlier. From Figure 21, it is 
evident that the conventional radiator is inferior, in that much 
more volume is needed in the system to achieve heat loss in 
comparison to the other two. 

Correlation 

Calculations were performed for some 135 combination of 
parameters in each of the three different fin geometries. These 
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numerical results have been used to arrive at meaningful 
correlations that will be helpful in quick evaluation of the 
performance of the tubular radiator. Correlations are 
developed between O and the other nondimensional thermo- 
physical parameters, viz., NRO Nc o  geometrical parameter 
roFr, and the ratio of tube radius to the fin tip radius (P). The 
correlations are of the following general form: 

4~ = K t N~tc~ovrN~cc I~  (15) 

The constants appearing in the correlations for the three 
cases are given in Table 1. 

The range of parameters involved in the three correlations 
are given in Table 2. 

All the above correlations had a correlation coefficient close 
to 0.99, and the maximum absolute deviation was found to be 
less than 10 percent. The comparison of the correlated data to 
the numerically calculated value for the triangular geometry is 
shown in Figure 22 as an example. 

The heat lost from the unfinned radiator is evaluated and is 
given in nondimensionalized form by the term fl as follows: 

1 
fl = N~F[1 (1 + 3~rRF)I/31 (18) 
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Figure 22 Parity plot showing the heat-loss ratio obtained from 
the correlation and the numerical data in the case of a tubular 
radiator with triangular profiled fins 

A quick design of the system may be approached in two 
different ways, viz., 1) based on the mass that can be added as 
the constraint, and 2) based on the desired heat loss as the 
constraint. 

In the first case, one has to find out the maximum heat that 
can be transferred from the system for a definite mass addition, 
given the pipe diameter. Since volume (mass) is known, the 
number of fins can be found by fixing the optimum fin height 
at 0.025 m. Then by using the correlation, the maximum value 
of 4~ is evaluated. In fact, all three different geometries can be 
tested and the most suitable system can be chosen. 

On the other hand, if one has to determine the minimum 
volume that is required to transfer a definite quantity of heat, 
one assumes the optimum fin outer diameter at the outset. 
The heat loss ratio, 0, is evaluated using Equation 18 and 
the known required heat loss. Since all the parameters on the 
right-hand side and the left-hand side of Equation 15 are 
known except rovr, the number of fins can be found. Once 
the number of fins are known, the total volume required can be 
evaluated. The procedure here is much easier than for the duct 
type radiator because in the present case the height of the fin 
is fixed, due to the existence of an optimum fin outer radius. 

Table 1 Values for the constants in the correlations for the three 
cases 

Profile /('1 a b c d 

Triangular 0.290 - 0 . 1 6 0  1.622 0.083 - 0 . 3 1 6  
Trapezoidal 0.391 - 0 . 1 1 2  1.857 0.088 - 0 . 3 6 7  
Rectangular 0.510 - 0 . 0 7 5  2.023 0.080 - 0 . 3 8 3  

Table 2 Range of parameters for the three cases 

Parameter Range 

NRC 5.8 x 10 - ~ -  6.8 x 10 -4 
ro~r 1.1 3 -- 2.40 
Ncc 7.3 x 1 0 - 3 - - 3 . 7  x 10 -2 
P 0.170 - 0.375 

C o n c l u s i o n s  

A detailed analysis of an annular finned tubular radiator has 
been presented in this paper. An optimum fin outer diameter 
for a given tube diameter has been shown to exist. We have 
also shown that this diameter is independent of other 
thermophysical properties such as thermal conductivity, inlet 
temperature, emissivity, and the mCp product. The relative 
performance of the triangular-, trapezoidal-, and rectangular- 
profile finned radiators have been compared based on their 
thermal performance and the weight added. Useful correlations 
have been arrived at to cover a practically useful range of 
parameters for design as well as for evaluation of the system. 
A comparative study has also been performed with other 
available radiator models, and the superiority of the present 
model has been asserted. The importance of and need for the 
present work has also been highlighted through comparison 
with the earlier works. A design methodology, assuming that 
the local fluid bulk temperature is equal to the wall 
temperature, has been suggested. 

Although most of the aspects of optimum design have been 
taken into account in this paper, it will be worthwhile to take 
up the following further studies with slight modifications in the 
program. The effect of varying fin heights from end to end in 
the same system (in the order of either increasing or decreasing 
heights), in which a better weight optimization may be possible, 
can be studied. An investigation can also be undertaken in 
which the fins are hollow and carry a boiling fluid, thereby 
essentially making the fin arrays isothermal and increasing the 
efficiency of the fins. The analysis can be extended for systems 
with background radiation, which can be incorporated into the 
program without much difficulty by specifying a nonzero 
background temperature. 
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